Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The HDO/H2O relationship in tropospheric water vapor in an idealized “last‐saturation” model

Identifieur interne : 005589 ( Main/Exploration ); précédent : 005588; suivant : 005590

The HDO/H2O relationship in tropospheric water vapor in an idealized “last‐saturation” model

Auteurs : S. C. Sherwood [Australie, États-Unis] ; C. Risi [France]

Source :

RBID : ISTEX:1DBF2F7ED946104A3674B5CAFAB830267AE77986

Descripteurs français

English descriptors

Abstract

Previous model studies have shown that the isotopic composition of tropospheric water vapor is sensitive to atmospheric water transport processes, but compositional information is difficult to interpret due to the complexity of the models. Here an attempt is made to clarify the sensitivity by computing the relationship between tropospheric HDO (via δD) and H2O (via specific humidity q) in an idealized model atmosphere based on a “last‐saturation” framework that includes convection coupled to a steady large‐scale circulation with prescribed horizontal mixing. Multiple physical representations of convection and mixing allow key structural as well as parametric uncertainties to be explored. This model has previously been shown to reproduce the essential aspects of the humidity distribution. Variations ofδD or qindividually are dominated by local dynamics, but their relationship is preserved advectively, thus revealing conditions in regions of convection. The model qualitatively agrees with satellite observations, and reproduces some parametric sensitivities seen in previous GCM experiments. Sensitivity to model assumptions is greatest in the upper troposphere, apparently because in‐situ evaporation and condensation processes in convective regions are more dominant in the budget there. In general, vapor recycling analogous to that in continental interiors emerges as the crucial element in explaining whyδD exceeds that predicted by a simple Rayleigh process; such recycling involves coexistent condensation sinks and convective moisture sources, induced respectively by (for example) waves and small‐scale convective mixing. The relative humidity distribution is much less sensitive to such recycling.

Url:
DOI: 10.1029/2012JD018068


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The HDO/H2O relationship in tropospheric water vapor in an idealized “last‐saturation” model</title>
<author>
<name sortKey="Sherwood, S C" sort="Sherwood, S C" uniqKey="Sherwood S" first="S. C." last="Sherwood">S. C. Sherwood</name>
</author>
<author>
<name sortKey="Risi, C" sort="Risi, C" uniqKey="Risi C" first="C." last="Risi">C. Risi</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:1DBF2F7ED946104A3674B5CAFAB830267AE77986</idno>
<date when="2012" year="2012">2012</date>
<idno type="doi">10.1029/2012JD018068</idno>
<idno type="url">https://api.istex.fr/document/1DBF2F7ED946104A3674B5CAFAB830267AE77986/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000555</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000555</idno>
<idno type="wicri:Area/Istex/Curation">000555</idno>
<idno type="wicri:Area/Istex/Checkpoint">000514</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">000514</idno>
<idno type="wicri:doubleKey">0148-0227:2012:Sherwood S:the:hdo:h</idno>
<idno type="wicri:Area/Main/Merge">005856</idno>
<idno type="wicri:source">INIST</idno>
<idno type="RBID">Pascal:12-0440471</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000E78</idno>
<idno type="wicri:Area/PascalFrancis/Curation">005043</idno>
<idno type="wicri:Area/PascalFrancis/Checkpoint">000C92</idno>
<idno type="wicri:explorRef" wicri:stream="PascalFrancis" wicri:step="Checkpoint">000C92</idno>
<idno type="wicri:doubleKey">0148-0227:2012:Sherwood S:the:hdo:h</idno>
<idno type="wicri:Area/Main/Merge">005B27</idno>
<idno type="wicri:Area/Main/Curation">005589</idno>
<idno type="wicri:Area/Main/Exploration">005589</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main">The HDO/H
<hi rend="subscript">2</hi>
O relationship in tropospheric water vapor in an idealized “last‐saturation” model</title>
<author>
<name sortKey="Sherwood, S C" sort="Sherwood, S C" uniqKey="Sherwood S" first="S. C." last="Sherwood">S. C. Sherwood</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Climate Change Research Centre and ARC Centre of Excellence for Climate System Science, University of New South Wales, Sydney, New South Wales</wicri:regionArea>
<wicri:noRegion>New South Wales</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<country wicri:rule="url">Australie</country>
</affiliation>
<affiliation wicri:level="1">
<country wicri:rule="url">États-Unis</country>
</affiliation>
</author>
<author>
<name sortKey="Risi, C" sort="Risi, C" uniqKey="Risi C" first="C." last="Risi">C. Risi</name>
<affiliation wicri:level="3">
<country xml:lang="fr">France</country>
<wicri:regionArea>Laboratoire de Météorologie Dynamique/IPSL, CNRS 4, Paris</wicri:regionArea>
<placeName>
<region type="region">Île-de-France</region>
<region type="old region">Île-de-France</region>
<settlement type="city">Paris</settlement>
</placeName>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Journal of Geophysical Research: Atmospheres</title>
<title level="j" type="alt">JOURNAL OF GEOPHYSICAL RESEARCH: ATMOSPHERES</title>
<idno type="ISSN">0148-0227</idno>
<idno type="eISSN">2156-2202</idno>
<imprint>
<biblScope unit="vol">117</biblScope>
<biblScope unit="issue">D19</biblScope>
<biblScope unit="page-count">11</biblScope>
<date type="published" when="2012-10-16">2012-10-16</date>
</imprint>
<idno type="ISSN">0148-0227</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0148-0227</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Advection</term>
<term>Ambient</term>
<term>Ambient vapor</term>
<term>Amount effect</term>
<term>Atmos</term>
<term>Atmospheric processes</term>
<term>Boundary layer</term>
<term>Climate change research centre</term>
<term>Complexity</term>
<term>Condensate</term>
<term>Constraint</term>
<term>Continental interiors</term>
<term>Convection</term>
<term>Convection region</term>
<term>Convective</term>
<term>Convective motions</term>
<term>Convective processes</term>
<term>Convective region</term>
<term>Convective source</term>
<term>Deep convection</term>
<term>Default parameter settings</term>
<term>Diffusive transport</term>
<term>Driest region</term>
<term>Evap</term>
<term>Evap case</term>
<term>Evap model</term>
<term>First order</term>
<term>Frankenberg</term>
<term>Galewsky</term>
<term>Gcms</term>
<term>General circulation model</term>
<term>General circulation models</term>
<term>Geophys</term>
<term>Highest level</term>
<term>Horizontal diffusion</term>
<term>Horizontal location</term>
<term>Horizontal transport</term>
<term>Humidity</term>
<term>Isotope</term>
<term>Isotopic</term>
<term>Isotopic composition</term>
<term>Isotopic exchanges</term>
<term>Isotopic ratios</term>
<term>Isotopic relationship</term>
<term>Isotopic relationships</term>
<term>Last saturation</term>
<term>Liquid droplets</term>
<term>Lower levels</term>
<term>Lower troposphere</term>
<term>Mipas</term>
<term>Mixing</term>
<term>Model figure</term>
<term>Model parameters</term>
<term>Model study</term>
<term>Moist convection</term>
<term>Moisture recycling</term>
<term>Noone</term>
<term>Open circles</term>
<term>Other studies</term>
<term>Phase change</term>
<term>Phase changes</term>
<term>Precipitation</term>
<term>Pressure level</term>
<term>Pressure levels</term>
<term>Q</term>
<term>Rayleigh</term>
<term>Rayleigh curve</term>
<term>Rayleigh process</term>
<term>Real world</term>
<term>Recycling</term>
<term>Relative humidities</term>
<term>Relative humidity</term>
<term>Relative humidity changes</term>
<term>Retrieval</term>
<term>Risi</term>
<term>Satellite observation</term>
<term>Satellite observations</term>
<term>Saturation deficit</term>
<term>Sensitivity studies</term>
<term>Sherwood</term>
<term>Simulation</term>
<term>Small changes</term>
<term>Small increase</term>
<term>Specific humidity</term>
<term>Stable water isotopes</term>
<term>Standard assumptions</term>
<term>Such recycling</term>
<term>Transport process</term>
<term>Tropical tropopause</term>
<term>Tropical tropopause layer</term>
<term>Tropopause</term>
<term>Troposphere</term>
<term>Tropospheric</term>
<term>Tropospheric humidity</term>
<term>Tropospheric water vapor</term>
<term>Upper troposphere</term>
<term>Upper tropospheric water vapor</term>
<term>Vapor</term>
<term>Warmer climate</term>
<term>Water isotopes</term>
<term>Water vapor</term>
<term>Water vapor isotope measurements</term>
<term>Water vapor isotopologues</term>
<term>Worden</term>
<term>atmosphere</term>
<term>circulation</term>
<term>condensation</term>
<term>convection</term>
<term>dynamics</term>
<term>evaporation</term>
<term>experimental studies</term>
<term>frame structure</term>
<term>in situ</term>
<term>mixing</term>
<term>recycling</term>
<term>saturation</term>
<term>sensitivity analysis</term>
<term>troposphere</term>
<term>uncertainties</term>
<term>water vapor</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Analyse sensibilité</term>
<term>Atmosphère</term>
<term>Bâti</term>
<term>Circulation</term>
<term>Complexité</term>
<term>Composition isotopique</term>
<term>Condensation</term>
<term>Convection</term>
<term>Dynamique</term>
<term>Etude expérimentale</term>
<term>Etude sur modèle</term>
<term>Evaporation</term>
<term>Facteur Q</term>
<term>Humidité spécifique</term>
<term>In situ</term>
<term>Incertitude</term>
<term>Mixage</term>
<term>Modèle circulation générale</term>
<term>Mélangeage</term>
<term>Observation par satellite</term>
<term>Phénomène transport</term>
<term>Recyclage</term>
<term>Saturation</term>
<term>Troposphère</term>
<term>Vapeur eau</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Advection</term>
<term>Ambient</term>
<term>Ambient vapor</term>
<term>Amount effect</term>
<term>Atmos</term>
<term>Atmospheric processes</term>
<term>Boundary layer</term>
<term>Climate change research centre</term>
<term>Condensate</term>
<term>Constraint</term>
<term>Continental interiors</term>
<term>Convection</term>
<term>Convection region</term>
<term>Convective</term>
<term>Convective motions</term>
<term>Convective processes</term>
<term>Convective region</term>
<term>Convective source</term>
<term>Deep convection</term>
<term>Default parameter settings</term>
<term>Diffusive transport</term>
<term>Driest region</term>
<term>Evap</term>
<term>Evap case</term>
<term>Evap model</term>
<term>First order</term>
<term>Frankenberg</term>
<term>Galewsky</term>
<term>Gcms</term>
<term>General circulation model</term>
<term>General circulation models</term>
<term>Geophys</term>
<term>Highest level</term>
<term>Horizontal diffusion</term>
<term>Horizontal location</term>
<term>Horizontal transport</term>
<term>Humidity</term>
<term>Isotope</term>
<term>Isotopic</term>
<term>Isotopic composition</term>
<term>Isotopic exchanges</term>
<term>Isotopic ratios</term>
<term>Isotopic relationship</term>
<term>Isotopic relationships</term>
<term>Last saturation</term>
<term>Liquid droplets</term>
<term>Lower levels</term>
<term>Lower troposphere</term>
<term>Mipas</term>
<term>Model figure</term>
<term>Model parameters</term>
<term>Moist convection</term>
<term>Moisture recycling</term>
<term>Noone</term>
<term>Open circles</term>
<term>Other studies</term>
<term>Phase change</term>
<term>Phase changes</term>
<term>Precipitation</term>
<term>Pressure level</term>
<term>Pressure levels</term>
<term>Rayleigh</term>
<term>Rayleigh curve</term>
<term>Rayleigh process</term>
<term>Real world</term>
<term>Recycling</term>
<term>Relative humidities</term>
<term>Relative humidity</term>
<term>Relative humidity changes</term>
<term>Retrieval</term>
<term>Risi</term>
<term>Satellite observations</term>
<term>Saturation deficit</term>
<term>Sensitivity studies</term>
<term>Sherwood</term>
<term>Simulation</term>
<term>Small changes</term>
<term>Small increase</term>
<term>Specific humidity</term>
<term>Stable water isotopes</term>
<term>Standard assumptions</term>
<term>Such recycling</term>
<term>Tropical tropopause</term>
<term>Tropical tropopause layer</term>
<term>Tropopause</term>
<term>Troposphere</term>
<term>Tropospheric</term>
<term>Tropospheric humidity</term>
<term>Tropospheric water vapor</term>
<term>Upper troposphere</term>
<term>Upper tropospheric water vapor</term>
<term>Vapor</term>
<term>Warmer climate</term>
<term>Water isotopes</term>
<term>Water vapor</term>
<term>Water vapor isotope measurements</term>
<term>Water vapor isotopologues</term>
<term>Worden</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>Atmosphère</term>
<term>Condensation</term>
<term>Simulation</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">Previous model studies have shown that the isotopic composition of tropospheric water vapor is sensitive to atmospheric water transport processes, but compositional information is difficult to interpret due to the complexity of the models. Here an attempt is made to clarify the sensitivity by computing the relationship between tropospheric HDO (via δD) and H2O (via specific humidity q) in an idealized model atmosphere based on a “last‐saturation” framework that includes convection coupled to a steady large‐scale circulation with prescribed horizontal mixing. Multiple physical representations of convection and mixing allow key structural as well as parametric uncertainties to be explored. This model has previously been shown to reproduce the essential aspects of the humidity distribution. Variations ofδD or qindividually are dominated by local dynamics, but their relationship is preserved advectively, thus revealing conditions in regions of convection. The model qualitatively agrees with satellite observations, and reproduces some parametric sensitivities seen in previous GCM experiments. Sensitivity to model assumptions is greatest in the upper troposphere, apparently because in‐situ evaporation and condensation processes in convective regions are more dominant in the budget there. In general, vapor recycling analogous to that in continental interiors emerges as the crucial element in explaining whyδD exceeds that predicted by a simple Rayleigh process; such recycling involves coexistent condensation sinks and convective moisture sources, induced respectively by (for example) waves and small‐scale convective mixing. The relative humidity distribution is much less sensitive to such recycling.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>Australie</li>
<li>France</li>
<li>États-Unis</li>
</country>
<region>
<li>Île-de-France</li>
</region>
<settlement>
<li>Paris</li>
</settlement>
</list>
<tree>
<country name="Australie">
<noRegion>
<name sortKey="Sherwood, S C" sort="Sherwood, S C" uniqKey="Sherwood S" first="S. C." last="Sherwood">S. C. Sherwood</name>
</noRegion>
<name sortKey="Sherwood, S C" sort="Sherwood, S C" uniqKey="Sherwood S" first="S. C." last="Sherwood">S. C. Sherwood</name>
</country>
<country name="États-Unis">
<noRegion>
<name sortKey="Sherwood, S C" sort="Sherwood, S C" uniqKey="Sherwood S" first="S. C." last="Sherwood">S. C. Sherwood</name>
</noRegion>
</country>
<country name="France">
<region name="Île-de-France">
<name sortKey="Risi, C" sort="Risi, C" uniqKey="Risi C" first="C." last="Risi">C. Risi</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 005589 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 005589 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     ISTEX:1DBF2F7ED946104A3674B5CAFAB830267AE77986
   |texte=   The HDO/H2O relationship in tropospheric water vapor in an idealized “last‐saturation” model
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024